Annual Drinking Water Quality Report # **Borough of Stanhope Water Department** For the Year 2015, Results from the Year 2014 We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is wells. Our four wells draw their water from the Delaware Water Basin. Our wells range from 83 to 220 feet deep. The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap or by contacting NJDEP - Bureau of Safe Drinking Water at (609) 292-5550. You may also contact your public water system to obtain information regarding your water system's Source Water Assessment. This water system's source water susceptibility ratings and a list of potential contaminant sources is attached MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. EPA requires monitoring for over 80 drinking water contaminants. Those contaminants listed in the table are only contaminants detected in your water. The Stanhope Borough Water Department routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2014. The state allows us to monitor for some contaminates less than once per year because the concentrations of these contaminates do not change frequently. Some of our data, through representative, are more than one year old. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). | | | - 4 | EST RESU | | | | | | | | | |--|-----------------------|--|-----------------------------|----------|--------|---|--|--|--|--|--| | Contaminant | taminant Violat ion I | | Units of
Measure
ment | MCL
G | MCL | Likely Source of Contamination | | | | | | | Radioactive Contaminants: | | | | | | | | | | | | | Combined Radium
228 & 226
Test results Yr. 2012 | N | Range = 1.5
Highest detect = 1.5 | pCi/1 | 0 | 5 | Erosion of natural deposits | | | | | | | Inorganic Contaminants: | | | | | | | | | | | | | Barium
Test results Yr. 2012 | N | Range = 0.04 - 0.06
Highest detect = 0.06 | Ppm | 2 | 2 | Discharge of drilling wastes; discharge from metal refineries; crosion of natural deposits | | | | | | | Chromium
Test results Yr. 2012 | N | Range = 1
Highest detect = 1 | Ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | | | | | | Copper
Test results Yr. 2014
Result at 90 th Percentile | N | 0.47
No samples exceeded the action level | Ppm | 1.3 | AL=1.3 | Corrosion of household plumbing systems; erosion of natural deposits | | | | | | | Cyanide
Test results Yr. 2012 | N | Range = ND - 4
Highest detect = 4 | Ppb | 200 | 200 | Discharge from steel/metal factories; discharge from plastic and fertilizer factories | | | | | | | Fluoride
Test results Yr. 2012 | N | Range = 0.06 - 0.2
Highest detect = 0.2 | Ppm | 4 | 4 | Erosion of Natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | | | | | | Lead
Test results Yr. 2014
Result at 90 th Percentile | N | 4 No sample exceeded the action level | Ppb | 0 | AL=15 | Corrosion of household plumbing systems, erosion of natural deposits | | | | | | | Nickel
Test results Yr. 2012 | N | Range = ND - 1
Highest detect = 1 | Ppb | N/A | N/A | Erosion of natural deposits | | | | | | | Nitrate
(as Nitrogen)
Test results Yr. 2014 | N | Range = 0.5 - 2.9
Highest detect = 2.9 | Ppm | 10 | 10 | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits | | | | | | | Volatile Organic Contami | nants / Disinfo | notion Byproducts: | | | | | | | | | | | HAA5 Haloacetic Acids Test results Yr. 2014 | N N | Range = ND - 5 Highest detect = 5 | Ppb | N/A | 60 | By-product of drinking water disinfection | | | | | | | Tetrachloroethylene
Test results Yr. 2014 | N | Range = ND - 0.7
Highest detect = 0.7 | Ppb | 0 | 1 | Leaching from PVC pipes; discharge from factories and dry cleaners | | | | | | | TTHM Total Trihalomethanes Test results Yr. 2014 | N | Range = 2 - 19
Highest detect = 19 | Ppm | N/A | 0 | By-product of drinking water disinfection | | | | | | | Secondary Contaminant | Level Detected | Units of Measurement | RUL | | |-----------------------|-----------------|----------------------|-----|--| | Sodium | Range = 79 - 84 | Ppm | 50 | | | Test results Yr. 2014 | | | | | We exceeded the Recommended Upper Limit (RUL) for Sodium. For healthy individuals the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in your diet. However, sodium levels above the RUL may be of concern to individuals on a sodium restricted diet. | Regulated Disinfectants | Level Detected | MRDL | MRDLG | |-------------------------|-------------------|---------|---------| | Chlorine | Average = 0.4 ppm | 4,0 ppm | 4.0 ppm | If you have any questions about this report or concerning your water utility, please contact William Storms at 973-347-6368. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled Borough Council meetings at Borough Hall, 77 Main Street. Meetings are held on the fourth Tuesday of each month at 7:00 p.m. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - 1. Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - 2. organic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - 3. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - 4. Organic chemical contaminates, including synthetic and volatile organic chemicals, which are byproducts of industrial process and petroleum production, and can, also come from gas stations, urban storm water runoff, and septic systems. - 5. Radioactive contaminants which can de naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800 - 426 - 4791. #### **DEFINITIONS** In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Non-Detects (ND) - laboratory analysis indicates that the constituent is not present. <u>Parts per million</u> (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. <u>Parts per billion</u> (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. <u>Picocuries per liter</u> (pCi/L) - picocuries per liter is a measure of the radioactivity in water. Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal -The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. <u>Secondary Contaminant</u> – substances that do not have an impact on health. Secondary Contaminants affect aesthetic qualities suc as odor, taste or appearance. Secondary standards are recommendations, not mandates. Recommended Upper Limit (RUL) – Recommended maximum concentration of secondary contaminants. These reflect aesthetic qualities. RUL's are recommendations, not mandates. <u>Maximum Residual Disinfectant Level (MRDL):</u> The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Stanhope Water Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 second to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at http://www.epa.gov/safewater/lead. The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals and synthetic organic chemicals. Our system received a monitoring waiver for synthetic organic chemicals. Please call our office if you have questions. We at the Stanhope Water Department work hard to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. ### Stanhope Water Department- PWSID # NJ1919001 Stanhope Water Department is a public community water system consisting of 4 wells and 1 purchased ground water source (if needed). This system's source water comes from the following aquifer: glacial sand and gravel, igneous and metamorphic rocks This system purchases water from the following water system: Netcong Water Department (if needed) ## Susceptibility Ratings for Stanhope Water Department Sources The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report. The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for ground water than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating. If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings. | | Pa | Pathogens Nutrients | | its | Pesticides | | | Volatile
Organic
Compounds | | | Inorganics | | | Radionuclides | | | Radon | | | Disinfection
Byproduct
Precursors | | | | | |-----------|----|---------------------|---|-----|------------|---|---|----------------------------------|---|---|------------|---|---|---------------|---|---|-------|---|---|---|---|---|---|---| | Sources | Н | М | L | Н | М | L | Н | M | L | Н | М | L | Н | М | L | Н | М | L | Н | М | L | Н | М | L | | Wells - 4 | | 2 | 2 | 2 | 2 | | | | 4 | 3 | | 1 | | 3 | 1 | | 2 | 2 | 1 | 3 | | 1 | 3 | | Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes. **Nutrients:** Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus. **Volatile Organic Compounds:** Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride. Pesticides: Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane. Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate. Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium. **Radon:** Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.nj.gov/dep/rpp/radon/index.htm or call (800) 648-0394. Disinfection Byproduct Precursors: A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.